Section 1.5

What was done in 2 and 3 dimensions is extended to n dimensions
Matrix multiplication is introduced.

On page 60 the book is not clear what $R \wedge n$ is. They call it Euclidean space.

Definitions:

Standard basis

Length $=$ norm of a vector

Use $\|x\|^{\wedge} 2=x \cdot x$ in exercise $2 a$
Straightforward results in Theorem 3.
Theorem 4 (Cauchy-Schwarz inequality) $|x \cdot y| \leq\|x\|\|y\|$

Theorem 5 (Triangle inequality)
$\|x+y\| \leq\|x\|+\|y\|$

What we learn about matrices:
Matrix addition
Multiplying a matrix by a scalar
Matrix multiplication Identity matrix I_n Inverse of a matrix Determinant of a matrix

Properties:

I_n A = A I_n
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
$A(3 B+2 C)=3 A B+2 A C$ and similar the other way round

Theorem that is not proved:
If A is a square matrix then A is invertible if and only if $\operatorname{Det} \mathrm{A} \neq 0$.

